sisl Documentation
Release 0.8.2

Nick R. Papior

Mar 31, 2017

Contents

L1 pip oo e
1.2 conda

1.3 Manual installation

Installation
Scripts

2.1 sdata ... e
22 SEOM v v v i e e e e e e e e e e e e e e
23 sgrid ... e

File formats

Welcome to sisl documentation!

41 Features. i i e
42 Introduction
43 Installation
44 Requirements v v v it

API links

5.1 Indices

13

...................... 13

sisl Documentation, Release 0.8.2

sisl has a number of features that makes it easy to jump right into and perform a large variation of tasks.

1. Easy creation of geometries. Similar to ASE sisl provides an easy scripting engine to create and manipulate
geometries. The goal of sisl is not specifically DFT-related software which typically only works with a
limited number of atoms. One of the main features of sisl is the enourmously fast creation and manipulation
of geometries such as attaching two geometries together, rotating atoms, removing atoms, changing bond-
lengths etc. Everything is optimized for extremely large scale systems >1, 000, 000 atoms such that
creating geometries for tight-binding models becomes a breeze.

2. Easy creation of tight-binding Hamiltonians via intrinsic and very fast algorithms for creation sparse ma-
trices. One of the key-points is that the Hamiltonian is treated as a matrix. l.e. one may easily specify
couplings without using routine calls. For large systems, >100, 000, it also becomes advantegeous to it-
erate on sub-grids of atoms to speed up the creation by orders of magnitudes. sisl intrinsically implements
such algorithms.

3. Post-processing of data from DFT software. One may easily add additional post-processing tools to use sisl
on non-implemented data-files.

Contents 1

https://wiki.fysik.dtu.dk/ase

sisl Documentation, Release 0.8.2

2 Contents

cHAPTER 1

Installation

sisl is very easy to install using any of your preferred methods.

pip

Installing sisl using PyPi can be done using

’pip install sisl

conda

Installing sisl using conda can be done using
conda install -c zerothi sisl

On conda sisl is also shipped in a developer installation for more up-to-date releases, this may be installed using:

’conda install -c zerothi sisl-dev

Manual installation

sisl may also be installed using the regular setup . py script. To do this the following packages are required to
be in PYTHONPATH:

* six

* setuptools
* numpy

* scipy

* netCDF4

* A fortran compiler

https://pypi.python.org/pypi/six
https://pypi.python.org/pypi/setuptools
http://github.com/numpy/numpy
http://github.com/scipy/scipy
http://github.com/Unidata/netcdf4-python

sisl Documentation, Release 0.8.2

If the above listed items are installed, sisl can be installed by first downloading the latest release on this page.
Subsequently install sisl by

python setup.py install —-prefix=<prefix>

4 Chapter 1. Installation

http://github.com/zerothi/sisl/releases

CHAPTER 2

Scripts

sisl implements a set of command-line utitilies that enables easy interaction with all the data files compatible
with sisl.

sdata

The sdata executable is a tool for reading and performing actions on all sisl file formats applicable (all Sile
‘s).

Essentially it performs operations dependent on the file that is being processed. If for instance the file contains
any kind of Geomet ry it allows the same operations as sgeom.

For a short help description of the possible uses do:

sdata <in> --help

which shows a help dependent on which kind of file <in> is.

As the options for this utility depends on the input file, it is not completely documented.

Siles with Geometry

If the Sile specified contains a Geometry one gets all the options like sgeom. L.e. sdata is a generic form
of the sgeom script.

Siles with Grid

If the Sile specified contains a Grid one gets all the options like sgrid. l.e. sdata is a generic form of the
sgrid script.

sgeom

The sgeom executable is a tool for reading and transforming general coordinate formats to other formats, or alter
them.

sisl Documentation, Release 0.8.2

For a short help description of the possible uses do:

sgeom ——help

Here we list a few of the most frequent used commands.

Conversion

The simplest usage is transforming from one format to another format. sgeom takes at least two mandatory
arguments, the first being the input file format, and the second (and any third + argumets) the output file formats

’sgeom <in> <out> [<out2>] [[<out3>] ...]

Hence to convert from an fdf SIESTA input file to an xyz file for plotting in a GUI program one can do this:

’sgeom RUN. fdf RUN.xyz

and the RUN. xy z file will be created.

Remark that the input file must be the first argument of sgeom.

Available formats

The currently available formats are:

xyz, standard coordinate format Note that the the xyz file format does not per see contain the cell size. The
XYZS1ile writes the cell information in the xyz file comment section (2nd line). Hence if the file was
written with sisl you retain the cell information.

gout, reads geometries from GULP output

nc, reads/writes NetCDF4 files created by SIESTA

TBT.nc/PHT.nc, reads NetCDF4 files created by TBtrans/PHtrans

th, intrinsic file format for geometry/tight-binding models

fdf, SIESTA native format

XYV, SIESTA coordinate format with velocities

POSCAR/CONTCAR, VASP coordinate format, does not contain species, i.e. returns Hydrogen geometry.
ASCII, BigDFT coordinate format

win, Wannier90 input file

xsf, XCrySDen coordinate format

Advanced Features

More advanced features are represented here.

The sgeom utility enables highly advanced creation of several geometry structures by invocing the arguments in

order.

Le. if one performs:

sgeom <in> —--repeat x 3 repx3.xyz —-repeat y 3 repx3_repy3.xyz

will read <in>, repeat the geometry 3 times along the first unit-cell vector, store the resulting geometry in
repx3.xyz. Subsequently it will repeat the already repeated structure 3 times along the second unit-cell vector
and store the now 3x 3 repeated structure as repx3_repy3.xyz.

Chapter 2. Scripts

sisl Documentation, Release 0.8.2

Repeating/Tiling structures

One may use periodicity to create larger structures from a simpler structure. This is useful for creating larger bulk
structures. To repeat a structure do

sgeom <in> --repeat [ax|yblzc] <int> <out>

which repeats the structure one atom at a time, <int> times, in the corresponding direction. Note that x and a
correspond to the same cell direction (the first).

To repeat the structure in chunks one can use the ——t ile option:

sgeom <in> --tile [ax|yb|zc] <int> <out>

which results in the same structure as ——repeat however with different atomic ordering.

Both tiling and repeating have the shorter variants:

sgeom <in> -t[xyz] <int> -r[xyz] <int>

to ease the commands.

To repeat a structure 4 times along the x cell direction:

sgeom RUN.fdf —--repeat x 4 RUN4x.fdf
sgeom RUN.fdf —--repeat-x 4 RUN4x.fdf
sgeom RUN.fdf —--tile x 4 RUN4x.fdf
sgeom RUN.fdf —--tile-x 4 RUN4x.fdf

where all the above yields the same structure, albeit with different orderings.

Rotating structure

To rotate the structure around certain cell directions one can do:

sgeom <in> --rotate [ax|ybl|zc] <angle> <out>

which rotates the structure around the origo with a normal vector along the specified cell direction. The input
angle is in degrees and not in radians. If one wish to use radians append an r in the angle specification.

Again there are shorthand commands:

sgeom <in> -R[xyz] <angle>

Combining command line arguments
All command line options may be used together. However, one should be aware that the order of the command
lines determine the order of operations.

If one starts by repeating the structure, then rotate it, then shift the structure, it will be different from, shift the
structure, then rotate, then repeat.

Be also aware that outputting structures are done at the time in the command line order. This means one can store
the intermediate steps while performing the entire operation.

sgrid

The sgrid executable is a tool for manipulating a simulation grid and transforming it into CUBE format for
plotting 3D data in, e.g. VMD or XCrySDen.

2.3. sgrid 7

sisl Documentation, Release 0.8.2

Currently this is primarily intended for usage with SIESTA.

For a short help description of the possible uses do:

sgrid —--help

Here we list a few of the most frequent used commands. Note that all commands are available via Python scripts
and the Grid class.

Creating CUBE files

The simplest usage is converting a grid file to CUBE file using

sgrid Rho.grid.nc Rho.cube

which converts a SIESTA grid file of the electron density into a corresponding CUBE file. The CUBE file writeout
is implemented in Cube.

Conveniently CUBE files can accomodate geometries and species for inclusion in the 3D plot and this can be
added to the file via the ——geomet ry flag, any geometry format implemented in sisl are also compatible with
sgrid.

sgrid Rho.grid.nc --geometry RUN.fdf Rho.cube

the shorthand is —g.

Grid differences

Often differences between two grids are needed. For this one can use the ——d1i £ £ flag which takes one additional
grid file for the difference. L.e.

sgrid Rho.grid.nc[0] —-g RUN.fdf --diff Rho.grid.nc[l] diff_up-down.cube

which takes the difference between the spin up and spin down in the same Rho.grid.nc file.

Reducing grid sizes

Often grids are far too large in that only a small part of the full cell is needed to be studied. One can remove certain
parts of the grid after reading, before writing. This will greatly decrease the output file and greatly speed-up the
process as writing huge ASCII files is extremely time consuming. There are two methods for reducing grids:

sgrid <file> --sub x <pos|<frac>f>
sgrid <file> —--remove x [+-]<pos|<frac>f>

This needs an example, say the unit cell is an orthogonal unit-cell with side lengths 10x10x20 Angstrom. To
reduce the cell to a middle square of 5x5x5 Angstrom you can do:

sgrid Rho.grid.nc --sub x 2.5:7.5 ——sub y 2.5:7.5 ——sub z 7.5:12.5 5x5x5.cube

note that the order of the reductions are made in the order of appearence. So rwo subsequent sub/remove commands
with the same direction will not yield the same final grid. The individual commands can be understood via

e ——sub x 2.5:7.5: keep the grid along the first cell direction above 2.5 A and below 5 A.
e ——sub y 2.5:7.5: keep the grid along the second cell direction above 2.5 A and below 5 A.
e ——sub z 7.5:12.5: keep the grid along the third cell direction above 7.5 A and below 12.5 A.

When one is dealing with fractional coordinates is can be convenient to use fractional grid operations. The length
unit for the position is always in Angstrgm, unless an optional f is appended which forces the unit to be in fractional
position (must be between 0 and 1).

8 Chapter 2. Scripts

sisl Documentation, Release 0.8.2

Averaging and summing

Sometimes it is convenient to average or sum grids along cell directions:

sgrid Rho.grid.nc —--average x meanx.cube
sgrid Rho.grid.nc —--sum x sumx.cube

which takes the average or the sum along the first cell direction, respectively. Note that this results in the number
of partitions along that direction to be 1 (not all 3D software is capable of reading such a CUBE file).

Advanced features

The above operations are not the limited use of the sis1 library. However, to accomblish more complex things
you need to manually script the actions using the Grid class and the methods available for that method. For
inspiration you can check the sgrid executable to see how the commands are used in the script.

2.3. sgrid 9

sisl Documentation, Release 0.8.2

10 Chapter 2. Scripts

CHAPTER 3

File formats

sisl implements a generic interface for interacting with many different file formats. When using the command
line utilities all these files are accepted as input for, especially sdata while only those which contains geometries
(Geomet ry) may be used with sgeom.

In sisl any file is named a Sile to destinguish it from File.
Here is a list of the currently supported file-formats with the file-endings defining the file format:
xyz XYZSile file format, generic file format for many geometry viewers.
cube CUBES1le file format, real-space grid file format (also contains geometry)
xsf XSFSile file format, XCrySDen_ file format
ham HamiltoniansSile file format, native file format for sisl
dat TableSile for tabular data
Below there is a list of file formats especially targetting a variety of DFT codes.
* BigDFT_ File formats inherent to BigDFT _:
ascii ASCIISileBigDFT input file for BigDFT, currently only implements geometry
o SIESTA _ File formats inherent to SIESTA_:
fdf fdfSileSiesta input file for SIESTA

bands bandsSileSiesta contains the band-structure output of SIESTA, with sdata one may plot this
file using the command-line.

out outSileSiesta output file of SIESTA, currently this may be used to query certain elements from
the output, such as the final geometry, etc.

grid.nc gridncSileSiesta real-space grid files of SIESTA. This Sile allows reading the
NetCDF _ output of SIESTA for the real-space quantities, such as, electrostatic potential, charge den-
sity, etc.

nc ncSileSiesta generic output file of SIESTA (only >=4.1). This Sile may contain all real-space
grids, Hamiltonians, density matrices, etc.

TSHS TSHSSileSiesta contains the Hamiltonian (read to get a Hamiltonian instance) and overlap
matrix from a TranSIESTA _ run.

11

sisl Documentation, Release 0.8.2

TBT.nc tbtncSileSiesta is the output file of TBtrans_ which contains all transport related quanti-
ties.

TBT.AV.nc tbtavncSileSiesta is the k-averaged equivalent of tbtncSileSiesta, this may be
generated using sdata siesta. TBT.nc —tbt-av.

XV XVSileSiesta is the currently runned geometry in SIESTA.

VASP_ File formats inherent to VASP:

POSCAR POSCARSileVASP contains the geometry of the VASP run.
CONTCAR CONTCARSileVASP is the continuation geometries from VASP.
Wannier90_ File formats inherent to Wannier90:

win winSileW90 is the seed file for Wannier90. From this one may read the Geometry or the
Hamiltonian if it has been output by Wannier90.

12

Chapter 3. File formats

cHAPTER 4

Welcome to sisl documentation!

sisl is atool to manipulate an increasing amount of density functional theory code input and/or output. It is also
a tight-binding code which implements extremely fast and scalable tight-binding creation algorithms (>1, 000,
000 orbitals). In particular is sis1 developed with TBtrans in mind to act as a tight-binding Hamiltonian input
engine for N-electrode transport calculations.

Features

sisl consists of several distinct features:

* Geometries; create, extend, combine, manipulate different geometries readed from a large variety of DFT-
codes and/or from generically used file formats.

* Hamiltonian; easily create tight-binding Hamiltonians with user chosen number of orbitals per atom. Or
read in Hamiltonians from DFT software such as SIESTA, Wannier90, etc. Secondly, there is intrinsic
capability of orthogonal and non-orthogonal Hamiltonians.

 Generic output files from DFT-software. A generic set of output files are implemented which provides easy
examination of output files.

* Command line utilities for processing of data files for a wide variety of file formats:

— sdata Read and transform any sisl data file. This script is capable of handling geometries, grids,
special data files such as binary files etc.

— sgeom a geometry conversion tool which reads and writes many commonly encounted files for geome-
tries, such as XYZ files etc. as well as DFT related input and output files.

— sgrid a real-space grid conversion tool which reads and writes many commonly encounted files for
real-space grids. Mainly targetted SIESTA _.

Introduction

Installation

The easiest way to install sisl is via the pypi interface. Install via:

13

https://launchpad.net/siesta
https://departments.icmab.es/leem/siesta
http://www.wannier.org

sisl Documentation, Release 0.8.2

’pip install sisl

In case you are using conda simply do:

’conda install -c zerothi sisl

Alternatively you can download the releases on the release page. And install via the regular setup . py interface:

’python setup.py install

|

which will install sis1 in your default location, use ——prefix <path> for manual control of the placement.

Requirements

To succesfully use sisl these Python packages must be installed:

Six
setuptools
numpy (>=1.9)

scipy
netCDF4

14

Chapter 4. Welcome to sisl documentation!

http://github.com/zerothi/sisl/releases
https://pypi.python.org/pypi/six
https://pypi.python.org/pypi/setuptools
http://github.com/numpy/numpy
http://github.com/scipy/scipy
http://github.com/Unidata/netcdf4-python

CHAPTER B

APl links

sisl

sisl package

sisl.atom

Atomic information in different object containers.

sisl.geometry

Geometry class to retain the atomic structure.

sisl.grid

Define a grid

sisl.supercell

Define a supercell

Indices

e genindex
¢ modindex

e search

15

	Installation
	pip
	conda
	Manual installation

	Scripts
	sdata
	sgeom
	sgrid

	File formats
	Welcome to sisl documentation!
	Features
	Introduction
	Installation
	Requirements

	API links
	Indices

