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sisl has a number of features which makes it easy to jump right into and perform a large variation of tasks.

1. Easy creation of geometries. Similar to ASE sisl provides an easy scripting engine to create and manipulate
geometries. The goal of sisl is not specifically DFT-related software which typically only targets a limited
number of atoms. One of the main features of sisl is the enourmously fast creation and manipulation of
very large geometries such as attaching two geometries together, rotating atoms, removing atoms, changing
bond-lengths etc. Everything is optimized for extremely large scale systems >1,000,000 atoms such that
creating geometries for tight-binding models becomes a breeze.

2. Easy creation of tight-binding Hamiltonians via intrinsic and very fast algorithms for creating sparse ma-
trices. One of the key-points is that the Hamiltonian is treated as a matrix. I.e. one may easily specify
couplings without using routine calls. For large systems, >10,000 atoms, it becomes advantegeous to
iterate on sub-grids of atoms to speed up the creation by orders of magnitudes. sisl intrinsically implements
such algorithms.

3. Post-processing of data from DFT software. One may easily add additional post-processing tools to use sisl
on non-implemented data-files.

Contents 1
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CHAPTER 1

Package

sisl is mainly a Python package with many intrinsic capabilities.

DFT

Many intrinsic DFT program files are handled by sisl and extraction of the necessary physical quantities are easily
performed.

Its main focus has been SIESTA which thus has the largest amount of implemented output files.

Geometry manipulation

Geometries can easily be generated from basic routines and enables easy repetitions, additions, removal etc. of
different atoms/geometries, for instance to generate a graphene flake one can use this small snippet:

>>> import sisl
>>> graphene = sisl.geom.graphene(1.42).repeat(100, 0).repeat(100, 1)

which generates a graphene flake of 2 * 100 * 100 = 20000 atoms.

3
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CHAPTER 2

Command line usage

The functionality of sisl is also extended to command line utilities for easy manipulation of data from DFT pro-
grams. There are a variety of commands to manipulate generic data (sdata), geometries (sgeom) or grid-related
quantities (sgrid).

5



sisl Documentation, Release 0.8.5

6 Chapter 2. Command line usage



CHAPTER 3

Installation

sisl is easy to install using any of your preferred methods.

pip

Installing sisl using PyPi can be done using

pip install sisl

conda

Installing sisl using conda can be done by

conda install -c zerothi sisl

On conda, sisl is also shipped in a developer installation for more up-to-date releases, this may be installed using:

conda install -c zerothi sisl-dev

Manual installation

sisl may be installed using the regular setup.py script. To do this the following packages are required to be in
PYTHONPATH:

• six

• setuptools

• numpy

• scipy

• netCDF4-python

• A fortran compiler

7
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If the above listed items are installed, sisl can be installed by first downloading the latest release on this page.
Subsequently install sisl by

python setup.py install --prefix=<prefix>

8 Chapter 3. Installation
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CHAPTER 4

Scripts

sisl implements a set of command-line utitilies that enables easy interaction with all the data files compatible
with sisl.

sdata

The sdata executable is a tool for reading and performing actions on all sisl file formats applicable (all Sile
‘s).

Essentially it performs operations dependent on the file that is being processed. If for instance the file contains
any kind of Geometry it allows the same operations as sgeom.

For a short help description of the possible uses do:

sdata <in> --help

which shows a help dependent on which kind of file <in> is.

As the options for this utility depends on the input file, it is not completely documented.

Siles with Geometry

If the Sile specified contains a Geometry one gets all the options like sgeom. I.e. sdata is a generic form
of the sgeom script.

Siles with Grid

If the Sile specified contains a Grid one gets all the options like sgrid. I.e. sdata is a generic form of the
sgrid script.

sgeom

The sgeom executable is a tool for reading and transforming general coordinate formats to other formats, or alter
them.

9



sisl Documentation, Release 0.8.5

For a short help description of the possible uses do:

sgeom --help

Here we list a few of the most frequent used commands.

Conversion

The simplest usage is transforming from one format to another format. sgeom takes at least two mandatory
arguments, the first being the input file format, and the second (and any third + argumets) the output file formats

sgeom <in> <out> [<out2>] [[<out3>] ...]

Hence to convert from an fdf SIESTA input file to an xyz file for plotting in a GUI program one can do this:

sgeom RUN.fdf RUN.xyz

and the RUN.xyz file will be created.

Remark that the input file must be the first argument of sgeom.

Available formats

The currently available formats are:

• xyz, standard coordinate format Note that the the xyz file format does not per see contain the cell size. The
XYZSile writes the cell information in the xyz file comment section (2nd line). Hence if the file was
written with sisl you retain the cell information.

• gout, reads geometries from GULP output

• nc, reads/writes NetCDF4 files created by SIESTA

• TBT.nc/PHT.nc, reads NetCDF4 files created by TBtrans/PHtrans

• tb, intrinsic file format for geometry/tight-binding models

• fdf, SIESTA native format

• XV, SIESTA coordinate format with velocities

• POSCAR/CONTCAR, VASP coordinate format, does not contain species, i.e. returns Hydrogen geometry.

• ASCII, BigDFT coordinate format

• win, Wannier90 input file

• xsf, XCrySDen coordinate format

Advanced Features

More advanced features are represented here.

The sgeom utility enables highly advanced creation of several geometry structures by invocing the arguments in
order.

I.e. if one performs:

sgeom <in> --repeat x 3 repx3.xyz --repeat y 3 repx3_repy3.xyz

will read <in>, repeat the geometry 3 times along the first unit-cell vector, store the resulting geometry in
repx3.xyz. Subsequently it will repeat the already repeated structure 3 times along the second unit-cell vector
and store the now 3x3 repeated structure as repx3_repy3.xyz.

10 Chapter 4. Scripts
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Repeating/Tiling structures

One may use periodicity to create larger structures from a simpler structure. This is useful for creating larger bulk
structures. To repeat a structure do

sgeom <in> --repeat [ax|yb|zc] <int> <out>

which repeats the structure one atom at a time, <int> times, in the corresponding direction. Note that x and a
correspond to the same cell direction (the first).

To repeat the structure in chunks one can use the --tile option:

sgeom <in> --tile [ax|yb|zc] <int> <out>

which results in the same structure as --repeat however with different atomic ordering.

Both tiling and repeating have the shorter variants:

sgeom <in> -t[xyz] <int> -r[xyz] <int>

to ease the commands.

To repeat a structure 4 times along the x cell direction:

sgeom RUN.fdf --repeat x 4 RUN4x.fdf
sgeom RUN.fdf --repeat-x 4 RUN4x.fdf
sgeom RUN.fdf --tile x 4 RUN4x.fdf
sgeom RUN.fdf --tile-x 4 RUN4x.fdf

where all the above yields the same structure, albeit with different orderings.

Rotating structure

To rotate the structure around certain cell directions one can do:

sgeom <in> --rotate [ax|yb|zc] <angle> <out>

which rotates the structure around the origo with a normal vector along the specified cell direction. The input
angle is in degrees and not in radians. If one wish to use radians append an r in the angle specification.

Again there are shorthand commands:

sgeom <in> -R[xyz] <angle>

Combining command line arguments

All command line options may be used together. However, one should be aware that the order of the command
lines determine the order of operations.

If one starts by repeating the structure, then rotate it, then shift the structure, it will be different from, shift the
structure, then rotate, then repeat.

Be also aware that outputting structures are done at the time in the command line order. This means one can store
the intermediate steps while performing the entire operation.

sgrid

The sgrid executable is a tool for manipulating a simulation grid and transforming it into CUBE format for
plotting 3D data in, e.g. VMD or XCrySDen.

4.3. sgrid 11
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Currently this is primarily intended for usage with SIESTA.

For a short help description of the possible uses do:

sgrid --help

Here we list a few of the most frequent used commands. Note that all commands are available via Python scripts
and the Grid class.

Creating CUBE files

The simplest usage is converting a grid file to CUBE file using

sgrid Rho.grid.nc Rho.cube

which converts a SIESTA grid file of the electron density into a corresponding CUBE file. The CUBE file writeout
is implemented in Cube.

Conveniently CUBE files can accomodate geometries and species for inclusion in the 3D plot and this can be
added to the file via the --geometry flag, any geometry format implemented in sisl are also compatible with
sgrid.

sgrid Rho.grid.nc --geometry RUN.fdf Rho.cube

the shorthand is -g.

Grid differences

Often differences between two grids are needed. For this one can use the --diff flag which takes one additional
grid file for the difference. I.e.

sgrid Rho.grid.nc[0] -g RUN.fdf --diff Rho.grid.nc[1] diff_up-down.cube

which takes the difference between the spin up and spin down in the same Rho.grid.nc file.

Reducing grid sizes

Often grids are far too large in that only a small part of the full cell is needed to be studied. One can remove certain
parts of the grid after reading, before writing. This will greatly decrease the output file and greatly speed-up the
process as writing huge ASCII files is extremely time consuming. There are two methods for reducing grids:

sgrid <file> --sub x <pos|<frac>f>
sgrid <file> --remove x [+-]<pos|<frac>f>

This needs an example, say the unit cell is an orthogonal unit-cell with side lengths 10x10x20 Angstrom. To
reduce the cell to a middle square of 5x5x5 Angstrom you can do:

sgrid Rho.grid.nc --sub x 2.5:7.5 --sub y 2.5:7.5 --sub z 7.5:12.5 5x5x5.cube

note that the order of the reductions are made in the order of appearence. So two subsequent sub/remove commands
with the same direction will not yield the same final grid. The individual commands can be understood via

• --sub x 2.5:7.5: keep the grid along the first cell direction above 2.5 Å and below 5 Å.

• --sub y 2.5:7.5: keep the grid along the second cell direction above 2.5 Å and below 5 Å.

• --sub z 7.5:12.5: keep the grid along the third cell direction above 7.5 Å and below 12.5 Å.

When one is dealing with fractional coordinates is can be convenient to use fractional grid operations. The length
unit for the position is always in Ångstrøm, unless an optional f is appended which forces the unit to be in fractional
position (must be between 0 and 1).

12 Chapter 4. Scripts
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Averaging and summing

Sometimes it is convenient to average or sum grids along cell directions:

sgrid Rho.grid.nc --average x meanx.cube
sgrid Rho.grid.nc --sum x sumx.cube

which takes the average or the sum along the first cell direction, respectively. Note that this results in the number
of partitions along that direction to be 1 (not all 3D software is capable of reading such a CUBE file).

Advanced features

The above operations are not the limited use of the sisl library. However, to accomblish more complex things
you need to manually script the actions using the Grid class and the methods available for that method. For
inspiration you can check the sgrid executable to see how the commands are used in the script.

4.3. sgrid 13
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CHAPTER 5

Tutorials

sisl is shipped with these tutorials which introduces the basics.

All examples are assumed to have this in the header:

import numpy as np
from sisl import *

to enable numpy and sisl.

Below is a list of the current tutorials:

Geometry creation – part 1

To create a Geometry one needs to define a set of attributes. The only required information is the atomic
coordinates:

>>> single_hydrogen = Geometry([[0., 0., 0.]])
>>> print(single_hydrogen)
{na: 1, no: 1, species:
{Atoms(1):

(1) == [H, Z: 1, orbs: 1, mass(au): 1.00794, maxR: -1.00000],
},
nsc: [1, 1, 1], maxR: -1.0

}

this will create a Geometry object with 1 Hydrogen atom with a single orbital (default if not specified), and a
supercell of 10 A in each Cartesian direction. When printing a Geometry object a list of information is printed
in an XML-like fashion. na corresponds to the total number of atoms in the geometry, while no refers to the
total number of orbitals. The species are printed in a sub-tree and Atoms(1) means that there is one distinct
atomic specie in the geometry. That atom is a Hydrogen, with mass listed in atomic-units. maxR refers to the
maximum range of all the orbitals associated with that atom. A negative number means that there is no specified
range. Lastly nsc refers to the number of neighbouring super-cells that is represented by the object. In this case
[1, 1, 1] means that it is a molecule and there are no super-cells (only the unit-cell).

To specify the atomic specie one may do:

>>> single_carbon = Geometry([[0., 0., 0.]], Atom('C'))

15

http://github.com/numpy/numpy


sisl Documentation, Release 0.8.5

which changes the Hydrogen to a Carbon atom. See <link to atom_01.rst> on how to create different atoms.

To create a geometry with two different atomic species, for instance a chain of alternating Natrium an Chloride
atoms, separated by 1.6 A one may do:

>>> chain = Geometry([[0. , 0., 0.],
[1.6, 0., 0.]], [Atom('Na'), Atom('Cl')],
[3.2, 10., 10.])

note the last argument which specifies the Cartesian lattice vectors. sisl is clever enough to repeat atomic species
if the number of atomic coordinates is a multiple of the number of passed atoms, i.e.:

>>> chainx2 = Geometry([[0. , 0., 0.],
[1.6, 0., 0.],
[3.2, 0., 0.],
[4.8, 0., 0.]]], [Atom('Na'), Atom('Cl')],
[6.4, 10., 10.])

which is twice the length of the first chain with alternating Natrium and Chloride atoms, but otherwise identical.

This is the most basic form of creating geometries in sisl and is the starting point of almost anything related to sisl.

Geometry creation – part 2

Many geometries are intrinsically enabled via the sisl.geom submodule.

Here we list the currently default geometries:

• honeycomb (graphene unit-cell):

hBN = geom.honeycomb(1.5, [Atom('B'), Atom('N')])

• graphene (equivalent to honeycomb with Carbon atoms):

graphene = geom.graphene(1.42)

• Simple-, body- and face-centered cubic as well as HCP All have the same interface:

sc = geom.sc(2.5)
bcc = geom.bcc(2.5)
fcc = geom.fcc(2.5)
hcp = geom.hcp(2.5)

• Nanotubes with different chirality:

ntb = geom.nanotube(1.54, chirality=(n, m))

• Diamond:

d = geom.diamond(3.57)

Specifying super-cell information

An important thing when dealing with geometries in how the super-cell is used. First, recall that the number of
supercells can be retrieved by:

>>> geometry = Geometry([[0, 0, 0]])
>>> print(geometry)
{na: 1, no: 1, species:

16 Chapter 5. Tutorials
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{Atoms(1):
(1) == [H, Z: 1, orbs: 1, mass(au): 1.00794, maxR: -1.00000],

},
nsc: [1, 1, 1], maxR: -1.0

}
>>> geometry.nsc # or geometry.sc.nsc
array([1, 1, 1], dtype=int32)

where nsc is the specific super-cell information. In the default case only the unit-cell is taken into consideration
(nsc: [1, 1, 1]). However when using the Geometry.close or Geometry.within functions one
may retrieve neighbouring atoms depending on the size of the supercell.

Specifying the number of super-cells may be done when creating the geometry, or after it has been created:

>>> geometry = Geometry([[0, 0, 0]], sc=SuperCell(5, [3, 3, 3]))
>>> geometry.nsc
array([3, 3, 3], dtype=int32)
>>> geometry.set_nsc([3, 1, 5])
>>> geometry.nsc
array([3, 1, 5], dtype=int32)

The final geometry enables intrinsic routines to interact with the 2 closest neighbouring cells along the first lattice
vector (1 + 2 == 3), and the 4 closest neighbouring cells along the third lattice vector (1 + 2 + 2 == 5).
Note that the number of neighbouring supercells is always an uneven number because if it connects in the positive
direction it also connects in the negative, hence the primary unit-cell plus 2 per neighbouring cell.

Example – square

Here we show a square 2D lattice with one atom in the unit-cell and a supercell which extends 2 cells along the
Cartesian 𝑥 lattice vector (5 in total) and 1 cell along the Cartesian 𝑦 lattice vector (3 in total):

>>> square = Geometry([[0.5,0.5,0]], sc=SuperCell([1,1,10], [5, 3, 1]))

which results in this underlying geometry:

With this setup, sisl, can handle couplings that are within the defined supercell structure, see green, full arrow.
Any other couplings that reach farther than the specified supercell cannot be defined (and will thus always be
zero), see the red, dashed arrow.

Note that even though the geometry is purely 2D, sisl requires the last non-used dimension. For 2D cases the
non-used direction should always have a supercell of 1.

Example – graphene

A commonly encountered example is the graphene unit-cell. In a tight-binding picture one may suffice with a
nearest-neighbour coupling.

Here we create the simple graphene 2D lattice with 2 atoms per unit-cell and a supercell of [3, 3, 1] to
account for nearest neighbour couplings.

5.3. Specifying super-cell information 17
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>>> graphene = geom.graphene()

which results in this underlying geometry:

The couplings from each unit-cell atom is highlighted by green (first atom) and blue (second atom) arrows. When
dealing with Hamiltonians the supercell is extremely important to obtain the correct electronic structure. If one
wishes to use the 3rd nearest neighbour couplings one is forced to use a supercell of [5, 5, 1] (please try and
convince yourself of this).

Electronic structure setup – part 1

A Hamiltonian is an extension of a Geometry. From the Geometry it reads the number of orbitals, the
supercell information.

Hamiltonians are matrices, and in sisl all Hamiltonians are treated as sparse matrices, i.e. matrices where there
are an overweight of zeroes in the full matrix. As the Hamiltonian is treated as a matrix one can do regular
assignments of the matrix elements, and basic math operations as well.

Here we create a square lattice and from this a Hamiltonian:

>>> geometry = Geometry([[0, 0, 0]])
>>> H = Hamiltonian(geometry)
>>> print(H)
{spin: 1, non-zero: 0
{na: 1, no: 1, species:
{Atoms(1):
(1) == [H, Z: 1, orbs: 1, mass(au): 1.00794, maxR: -1.00000],

},
nsc: [1, 1, 1], maxR: -1.0
}

}

which informs that the Hamiltonian currently only has 1 spin-component, is a matrix with complete zeroes (non-
zero is 0). The geometry is a basic geometry with only one orbital per atom as 𝑛𝑎 = 𝑛𝑜.

This geometry and Hamiltonian represents a lone atom with one orbital with zero on-site energy, a rather un-
interesting case.

The examples here will be re-performed in Electronic structure setup – part 2 by highlighting how the Hamiltonian
can be setup in a more easy way.

Example – square

Let us try and continue from Geometry creation – part 1 and create a square 2D lattice with one atom in the
unit-cell and a supercell which couples only to nearest neighbour atoms.

>>> square = Geometry([[0.5,0.5,0]], sc=SuperCell([1, 1, 10], [3, 3, 1]))
>>> H = Hamiltonian(square)

18 Chapter 5. Tutorials
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Now we have a periodic structure with couplings allowed only to nearest neighbour atoms. Note, that it still
only has 1 orbital. In the following we setup the on-site and the 4 nearest neighbour couplings to, −4 and 1,
respectively:

>>> H[0, 0] = -4
>>> H[0, 0, (1, 0)] = 1
>>> H[0, 0, (-1, 0)] = 1
>>> H[0, 0, (0, 1)] = 1
>>> H[0, 0, (0, -1)] = 1
>>> print(H)
{spin: 1, non-zero: 5
{na: 1, no: 1, species:
{Atoms(1):
(1) == [H, Z: 1, orbs: 1, mass(au): 1.00794, maxR: -1.00000],

},
nsc: [3, 3, 1], maxR: -1.0

}
}

There are a couple of things going on here (the items corresponds to lines in the above snippet):

1. Specifies the on-site energy of the orbital. Note that we assign as would do in a normal matrix.

2. Sets the coupling element from the first orbital in the primary unit-cell to the first orbital in the unit-cell
neighbouring in the 𝑥 direction, hence (1, 0).

3. Sets the coupling element from the first orbital in the primary unit-cell to the first orbital in the unit-cell
neighbouring in the −𝑥 direction, hence (-1, 0).

4. Sets the coupling element from the first orbital in the primary unit-cell to the first orbital in the unit-cell
neighbouring in the 𝑦 direction, hence (0, 1).

5. Sets the coupling element from the first orbital in the primary unit-cell to the first orbital in the unit-cell
neighbouring in the −𝑦 direction, hence (0, -1).

sisl does not intrinsically enforce symmetry, that is the responsibility of the user. This completes the Hamiltonian
for nearest neighbour interaction and enables the calculation of the band-structure of the system.

In the below figure we plot the band-structure going from the Γ point to the band-edge along 𝑥, to the corner and
back.

The complete code for this example (plus the band-structure) can be found here.

5.4. Electronic structure setup – part 1 19
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Example – graphene

A commonly encountered example is the graphene unit-cell. In a tight-binding picture one may suffice with a
nearest-neighbour coupling.

Here we create the simple graphene 2D lattice with 2 atoms per unit-cell and a supercell of [3, 3, 1] to
account for nearest neighbour couplings.

>>> graphene = geom.graphene()
>>> H = Hamiltonian(graphene)

The nearest neighbour tight-binding model for graphene uses 0 onsite energy and 2.7 as the hopping parameter.
These are specified as this:

>>> H[0, 1] = 2.7
>>> H[0, 1, (-1, 0)] = 2.7
>>> H[0, 1, (0, -1)] = 2.7
>>> H[1, 0] = 2.7
>>> H[1, 0, (1, 0)] = 2.7
>>> H[1, 0, (0, 1)] = 2.7

The complete code for this example (plus the band-structure) can be found here.

Electronic structure setup – part 2

Following part 1 we focus on how to generalize the specification of the hopping parameters in a more generic
way.

First, we re-create the square geometry (with one orbital per atom). However, to generalize the specification of
the hopping parameters it is essential that we specify how long range the orbitals interact. In the following we set
the atomic specie to be a Hydrogen atom with a single orbital with a range of 1

>>> Hydrogen = Atom(1, R=1.)
>>> square = Geometry([[0.5, 0.5, 0]], Hydrogen,

sc=SuperCell([1, 1, 10], [3, 3, 1]))
>>> H = Hamiltonian(square)
>>> print(H)
{spin: 1, non-zero: 0
{na: 1, no: 1, species:
{Atoms(1):

20 Chapter 5. Tutorials
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(1) == [H, Z: 1, orbs: 1, mass(au): 1.00794, maxR: 1.00000],
},
nsc: [3, 3, 1], maxR: 1.0

}
}

Note how the maxR variable has changed from -1.0 to 1.0. This corresponds to the maximal orbital range in
the geometry. Here there is only one type of orbital, but for geometries with several different orbitals, there may
be different orbital ranges.

Now one can assign the generalized parameters:

>>> for ia in square: # loop atomic indices (here equivalent to the orbital
→˓indices)
... idx_a = square.close(ia, R=[0.1, 1.1])
... H[ia, idx_a[0]] = -4.
... H[ia, idx_a[1]] = 1.

The Geometry.close function is a convenience function to return atomic indices of atoms within a certain
radius. For instance close(0, R=1.) returns all atomic indices within a spherical radius of 1 from the first
atom in the geometry, including it-self. close([0., 0., 1.], R=1.) will return all atomic indices within
1 of the coordinate [0., 0., 1.]. If one specifies a list of R it will return the atomic indices in the sphere
within the first element; and for the later values it will return the atomic indices in the spherical shell between the
corresponding radii and the previous radii.

The above code is the preferred method of creating a Hamiltonian. It is safe because it ensures that all parameters
are set, and symmetrized.

For very large geometries (larger than 50,000 atoms) the above code will be extremely slow. Hence, the preferred
method to setup the Hamiltonian for these large geometries is:

>>> for ias, idxs in square.iter_block():
... for ia in ias:
... idx_a = square.close(ia, R=[0.1, 1.1], idx=idxs)
... H[ia, idx_a[0]] = -4.
... H[ia, idx_a[1]] = 1.

The code above is the preferred method of specifying the Hamiltonian parameters.

The complete code for this example (plus the band-structure) can be found here.
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CHAPTER 6

Examples

sisl is shipped with these examples which describes a large variation of use cases.

All examples are assumed to have this in the header:

import numpy as np
from sisl import *

to enable numpy and sisl.

Graphene tight-binding model

This example creates a minimal graphene unit-cell of two atoms. The Carbon atoms are described with a single
orbital per atom and with a cutoff radius of 1.42 Å.

The Hamiltonian H is an object which may be treated as a sparse matrix. The for loop below loops over all
atoms (ia) in the graphene unit-cell. The close function returns a list of length len(R) with elements where
all neighbouring atoms within the radius defined in R are listed. Comments in the below example clarifies each of
the steps carefully.

# This example creates the tight-binding Hamiltonian
# for graphene with on-site energy 0, and hopping energy
# -2.7 eV.

import sisl

bond = 1.42
# Construct the atom with the appropriate orbital range
# Note the 0.01 which is for numerical accuracy.
C = sisl.Atom(6, R = bond + 0.01)
# Create graphene unit-cell
gr = sisl.geom.graphene(bond, C)

# Create the tight-binding Hamiltonian
H = sisl.Hamiltonian(gr)
R = [0.1 * bond, bond + 0.01]

for ia in gr:
idx_a = gr.close(ia, R)
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# On-site
H[ia, idx_a[0]] = 0.
# Nearest neighbour hopping
H[ia, idx_a[1]] = -2.7

# Calculate eigenvalues at K-point
print(H.eigh([2./3, 1./3, 0.]))
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CHAPTER 7

File formats

sisl implements a generic interface for interacting with many different file formats. When using the command
line utilities all these files are accepted as input for, especially sdata while only those which contains geometries
(Geometry) may be used with sgeom.

In sisl any file is named a Sile to destinguish it from File.

Here is a list of the currently supported file-formats with the file-endings defining the file format:

xyz XYZSile file format, generic file format for many geometry viewers.

cube CUBESile file format, real-space grid file format (also contains geometry)

xsf XSFSile file format, ‘XCrySDen‘_ file format

ham HamiltonianSile file format, native file format for sisl

dat TableSile for tabular data

Below there is a list of file formats especially targetting a variety of DFT codes.

• ‘BigDFT‘_ File formats inherent to ‘BigDFT‘_:

ascii ASCIISileBigDFT input file for BigDFT, currently only implements geometry

• ‘SIESTA‘_ File formats inherent to ‘SIESTA‘_:

fdf fdfSileSiesta input file for SIESTA

bands bandsSileSiesta contains the band-structure output of SIESTA, with sdata one may plot this
file using the command-line.

out outSileSiesta output file of SIESTA, currently this may be used to query certain elements from
the output, such as the final geometry, etc.

grid.nc gridncSileSiesta real-space grid files of SIESTA. This Sile allows reading the
‘NetCDF‘_ output of SIESTA for the real-space quantities, such as, electrostatic potential, charge
density, etc.

nc ncSileSiesta generic output file of SIESTA (only >=4.1). This Sile may contain all real-space
grids, Hamiltonians, density matrices, etc.

TSHS TSHSSileSiesta contains the Hamiltonian (read to get a Hamiltonian instance) and overlap
matrix from a ‘TranSIESTA‘_ run.
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TBT.nc tbtncSileSiesta is the output file of ‘TBtrans‘_ which contains all transport related quan-
tities.

TBT.AV.nc tbtavncSileSiesta is the k-averaged equivalent of tbtncSileSiesta, this may be
generated using sdata siesta.TBT.nc –tbt-av.

XV XVSileSiesta is the currently runned geometry in SIESTA.

• ‘VASP‘_ File formats inherent to VASP:

POSCAR POSCARSileVASP contains the geometry of the VASP run.

CONTCAR CONTCARSileVASP is the continuation geometries from VASP.

• ‘Wannier90‘_ File formats inherent to Wannier90:

win winSileW90 is the seed file for Wannier90. From this one may read the Geometry or the
Hamiltonian if it has been output by Wannier90.

• ‘ScaleUp‘_ File formats inherent to ScaleUp

REF REFSileScaleUp is the geometry file for ScaleUp.

restart restartSileScaleUp is the displacement geometry file for ScaleUp.
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CHAPTER 8

Welcome to sisl documentation!

sisl is a tool to manipulate an increasing amount of density functional theory code input and/or output. It is also
a tight-binding code implementing extremely fast and scalable tight-binding creation algorithms (>1,000,000
orbitals). sisl is developed in particular with TBtrans in mind to act as a tight-binding Hamiltonian input engine
for N-electrode transport calculations.

Features

sisl consists of several distinct features:

• Geometries; create, extend, combine, manipulate different geometries readed from a large variety of DFT-
codes and/or from generically used file formats.

• Hamiltonian; easily create tight-binding Hamiltonians with user chosen number of orbitals per atom. Or
read in Hamiltonians from DFT software such as SIESTA, Wannier90, etc. Secondly, there is intrinsic
capability of orthogonal and non-orthogonal Hamiltonians.

• Generic output files from DFT-software. A set of output files are implemented which provides easy exami-
nation of output files.

• Command line utilities for processing of data files for a wide variety of file formats:

– sdata Read and transform any sisl data file. This script is capable of handling geometries, grids, special
data files such as binary files etc.

– sgeom a geometry conversion tool which reads and writes many commonly encounted files for geome-
tries, such as XYZ files etc. as well as DFT related input and output files.

– sgrid a real-space grid conversion tool which reads and writes many commonly encounted files for
real-space grids.

Installation

Follow these steps to install sisl.
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CHAPTER 9

API links

A selected list of links to the API documentation of the most commonly used objects:

sisl sisl package
sisl.atom Atomic information in different object containers.
sisl.geometry Geometry class to retain the atomic structure.
sisl.grid Define a grid
sisl.supercell Define a supercell
sisl.physics Module containing a variety of different physical quanti-

ties.

Indices

• genindex

• modindex

• search
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