Source code for sisl.physics.spin

# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
import numpy as np

from sisl._internal import set_module
from sisl.messages import deprecate_method


__all__ = ['Spin']


@set_module("sisl.physics")
class Spin:
    r""" Spin class to determine configurations and spin components.

    The basic class `Spin` implements a generic method to determine a spin configuration.

    Its usage can be summarized in these few examples:

    >>> Spin(Spin.UNPOLARIZED) == Spin("unpolarized") == Spin()
    True
    >>> Spin(Spin.POLARIZED) == Spin("polarized") == Spin("p")
    True
    >>> Spin(Spin.NONCOLINEAR, dtype=np.complex128) == Spin("non-collinear") == Spin("nc")
    True
    >>> Spin(Spin.SPINORBIT, dtype=np.complex128) == Spin("spin-orbit") == Spin("so") == Spin("soc")
    True

    Note that a data-type may be associated with a spin-object. This is not to say
    that the data-type is used in the configuration, but merely that it helps
    any sub-classed or classes who use the spin-object to determine the
    usage of the different spin-components.

    Parameters
    ----------
    kind : str or int, Spin, optional
       specify the spin kind
    dtype : numpy.dtype, optional
       the data-type used for the spin-component.
    """

    #: Constant for an un-polarized spin configuration
    UNPOLARIZED = 0
    #: Constant for a polarized spin configuration
    POLARIZED = 1
    #: Constant for a non-collinear spin configuration
    NONCOLINEAR = 2
    #: Constant for a spin-orbit spin configuration
    SPINORBIT = 3

    #: The :math:`\boldsymbol\sigma_x` Pauli matrix
    X = np.array([[0, 1], [1, 0]], np.complex128)
    #: The :math:`\boldsymbol\sigma_y` Pauli matrix
    Y = np.array([[0, -1j], [1j, 0]], np.complex128)
    #: The :math:`\boldsymbol\sigma_z` Pauli matrix
    Z = np.array([[1, 0], [0, -1]], np.complex128)

    __slots__ = ('_size', '_kind', '_dtype')

[docs] def __init__(self, kind='', dtype=np.float64): if isinstance(kind, Spin): self._kind = kind._kind self._dtype = kind._dtype self._size = kind._size return # Copy data-type self._dtype = dtype if isinstance(kind, str): kind = kind.lower() kind = {'unpolarized': Spin.UNPOLARIZED, '': Spin.UNPOLARIZED, Spin.UNPOLARIZED: Spin.UNPOLARIZED, 'polarized': Spin.POLARIZED, 'p': Spin.POLARIZED, 'pol': Spin.POLARIZED, Spin.POLARIZED: Spin.POLARIZED, 'non-colinear': Spin.NONCOLINEAR, 'non-collinear': Spin.NONCOLINEAR, 'nc': Spin.NONCOLINEAR, Spin.NONCOLINEAR: Spin.NONCOLINEAR, 'spin-orbit': Spin.SPINORBIT, 'so': Spin.SPINORBIT, 'soc': Spin.SPINORBIT, Spin.SPINORBIT: Spin.SPINORBIT}.get(kind) if kind is None: raise ValueError(f"{self.__class__.__name__} initialization went wrong because of wrong " "kind specification. Could not determine the kind of spin!") # Now assert the checks self._kind = kind if np.dtype(dtype).kind == 'c': size = {self.UNPOLARIZED: 1, self.POLARIZED: 2, self.NONCOLINEAR: 4, self.SPINORBIT: 4}.get(kind) else: size = {self.UNPOLARIZED: 1, self.POLARIZED: 2, self.NONCOLINEAR: 4, self.SPINORBIT: 8}.get(kind) self._size = size
def __str__(self): if self.is_unpolarized: return f'{self.__class__.__name__}{{unpolarized, kind={self.dkind}}}' if self.is_polarized: return f'{self.__class__.__name__}{{polarized, kind={self.dkind}}}' if self.is_noncolinear: return f'{self.__class__.__name__}{{non-colinear, kind={self.dkind}}}' return f'{self.__class__.__name__}{{spin-orbit, kind={self.dkind}}}'
[docs] def copy(self): """ Create a copy of the spin-object """ return Spin(self.kind, self.dtype)
@property def dtype(self): """ Data-type of the spin configuration """ return self._dtype @property def dkind(self): """ Data-type kind """ return np.dtype(self._dtype).kind @property def size(self): """ Number of elements to describe the spin-components """ return self._size @property @deprecate_method("Use Spin.size instead") def spins(self): """ Number of elements to describe the spin-components """ return self._size @property def spinor(self): """ Number of spinor components (1 or 2) """ return min(2, self._size) @property def kind(self): """ A unique ID for the kind of spin configuration """ return self._kind @property def is_unpolarized(self): """ True if the configuration is not polarized """ # Regardless of data-type return self.kind == Spin.UNPOLARIZED @property def is_polarized(self): """ True if the configuration is polarized """ return self.kind == Spin.POLARIZED is_colinear = is_polarized @property def is_noncolinear(self): """ True if the configuration non-collinear """ return self.kind == Spin.NONCOLINEAR @property def is_diagonal(self): """ Whether the spin-box is only using the diagonal components This will return true for non-polarized and polarized spin configurations. Otherwise false. """ return self.kind in (Spin.UNPOLARIZED, Spin.POLARIZED) @property @deprecate_method("Use 'not Spin.is_diagonal' instead") def has_noncolinear(self): """ True if the configuration is non-collinear or spin-orbit """ return self.kind >= Spin.NONCOLINEAR @property def is_spinorbit(self): """ True if the configuration is spin-orbit """ return self.kind == Spin.SPINORBIT def __len__(self): return self._size # Comparisons def __lt__(self, other): return self.kind < other.kind def __le__(self, other): return self.kind <= other.kind def __eq__(self, other): return self.kind == other.kind def __ne__(self, other): return not self == other def __gt__(self, other): return self.kind > other.kind def __ge__(self, other): return self.kind >= other.kind def __getstate__(self): return { 'size': self.size, 'kind': self.kind, 'dtype': self.dtype } def __setstate__(self, state): self._size = state['size'] self._kind = state['kind'] self._dtype = state['dtype']