Source code for sisl.io.vasp.locpot

from __future__ import print_function, division

from numbers import Integral
import numpy as np

from .sile import SileVASP
from ..sile import *
from .car import carSileVASP

from sisl import Grid


__all__ = ['locpotSileVASP']


[docs]class locpotSileVASP(carSileVASP): """ Electrostatic (or total) potential plus geometry This file-object handles the electrostatic(total) potential from VASP """
[docs] @sile_fh_open(True) def read_grid(self, index=0, dtype=np.float64): """ Reads the potential (in eV) from the file and returns with a grid (plus geometry) Parameters ---------- index : int or array_like, optional the index of the potential to read. For a spin-polarized VASP calculation 0 and 1 are allowed, UP/DOWN. For non-collinear 0, 1, 2 or 3 is allowed which equals, TOTAL, x, y, z total potential with the Cartesian directions equal to the potential for the magnetization directions. For array-like they refer to the fractional contributions for each corresponding index. dtype : numpy.dtype, optional grid stored dtype Returns ------- Grid : potential with associated geometry """ geom = self.read_geometry() V = geom.sc.volume # Now we are past the cell and geometry # We can now read the size of LOCPOT self.readline() nx, ny, nz = list(map(int, self.readline().split())) n = nx * ny * nz is_index = True if isinstance(index, Integral): max_index = index + 1 else: is_index = False max_index = len(index) rl = self.readline vals = [] vapp = vals.append i = 0 while i < n * max_index: dat = [l for l in rl().split()] vapp(dat) i += len(dat) if i % n == 0 and i < n * max_index: # Each time a new spin-index is present, we need to read the coordinates j = 0 while j < geom.na: j += len(rl().split()) # one line of nx, ny, nz rl() # Cut size before proceeding (otherwise it *may* fail) vals = np.array(vals).astype(dtype).ravel() if is_index: val = vals[n * index:n * (index + 1)].reshape(nz, ny, nx) else: vals = vals[:n * max_index].reshape(-1, nz, ny, nx) val = vals[0] * index[0] for i, scale in enumerate(index[1:]): val += vals[i + 1] * scale del vals # Make it C-ordered with nx, ny, nz val = np.swapaxes(val, 0, 2) / V # Create the grid with data # Since we populate the grid data afterwards there # is no need to create a bigger grid than necessary. grid = Grid([1, 1, 1], dtype=dtype, geometry=geom) grid.grid = val return grid
add_sile('LOCPOT', locpotSileVASP, gzip=True)