RealSpaceSE

class sisl.physics.RealSpaceSE(parent, semi_axis, k_axes, unfold=(1, 1, 1), **options)[source]

Bulk real-space self-energy (or Green function) for a given physical object with periodicity

The real-space self-energy is calculated via the k-averaged Green function:

\[\boldsymbol\Sigma^\mathcal{R}(E) = \mathbf S^\mathcal{R} (E+i\eta) - \mathbf H^\mathcal{R} - \sum_{\mathbf k} \mathbf G_{\mathbf k}(E)\]

The method actually used is relying on RecursiveSI and Bloch objects.

Parameters
parentSparseOrbitalBZ

a physical object from which to calculate the real-space self-energy. The parent object must have only 3 supercells along the direction where self-energies are used.

semi_axisint

semi-infinite direction (where self-energies are used and thus exact precision)

k_axesarray_like of int

the axes where k-points are desired. 1 or 2 values are required and the semi_axis cannot be one of them

unfold(3,) of int

number of times the parent structure is tiled along each direction The resulting Green function/self-energy ordering is always tiled along the semi-infinite direction first, and then the other directions in order.

etafloat, optional

imaginary part in the self-energy calculations (default 1e-4 eV)

dkfloat, optional

fineness of the default integration grid, specified in units of Ang, default to 1000 which translates to 1000 k-points along reciprocal cells of length 1. Ang^-1.

bzBrillouinZone, optional

integration k-points, if not passed the number of k-points will be determined using dk and time-reversal symmetry will be determined by trs, the number of points refers to the unfolded system.

trsbool, optional

whether time-reversal symmetry is used in the BrillouinZone integration, default to true.

Examples

>>> graphene = geom.graphene()
>>> H = Hamiltonian(graphene)
>>> H.construct([(0.1, 1.44), (0, -2.7)])
>>> rse = RealSpaceSE(H, 0, 1, (3, 4, 1))
>>> rse.green(0.1)

The Brillouin zone integration is determined naturally.

>>> graphene = geom.graphene()
>>> H = Hamiltonian(graphene)
>>> H.construct([(0.1, 1.44), (0, -2.7)])
>>> rse = RealSpaceSE(H, 0, 1, (3, 4, 1))
>>> rse.set_options(eta=1e-3, bz=MonkhorstPack(H, [1, 1000, 1]))
>>> rse.initialize()
>>> rse.green(0.1) # eta = 1e-3
>>> rse.green(0.1 + 1j * 1e-4) # eta = 1e-4

Manually specify Brillouin zone integration and default \(\eta\) value.

Methods

__init__(self, parent, semi_axis, k_axes[, …])

Initialize real-space self-energy calculator

clear(self)

Clears the internal arrays created in initialize

green(self, E[, k, dtype])

Calculate the real-space Green function

initialize(self)

Initialize the internal data-arrays used for efficient calculation of the real-space quantities

real_space_coupling(self[, ret_indices])

Real-space coupling parent where sites fold into the parent real-space unit cell

real_space_parent(self)

Return the parent object in the real-space unfolded region

self_energy(self, E[, k, bulk, coupling, dtype])

Calculate the real-space self-energy

set_options(self, \*\*options)

Update options in the real-space self-energy

clear(self)[source]

Clears the internal arrays created in initialize

green(self, E, k=(0, 0, 0), dtype=None, **kwargs)[source]

Calculate the real-space Green function

The real space Green function is calculated via:

\[\mathbf G^\mathcal{R}(E) = \sum_{\mathbf k} \mathbf G_{\mathbf k}(E)\]
Parameters
Efloat/complex

energy to evaluate the real-space Green function at

karray_like, optional

only viable for 3D bulk systems with real-space Green functions along 2 directions. I.e. this would correspond to a circular real-space Green function

dtypenumpy.dtype, optional

the resulting data type, default to np.complex128

**kwargsdict, optional

arguments passed directly to the self.parent.Pk method (not self.parent.Sk), for instance spin

initialize(self)[source]

Initialize the internal data-arrays used for efficient calculation of the real-space quantities

This method should first be called after all options has been specified.

If the user hasn’t specified the bz value as an option this method will update the internal integration Brillouin zone based on dk and trs options. The \(\mathbf k\) point sampling corresponds to the number of points in the non-folded system and thus the final sampling is equivalent to the sampling times the unfolding (per \(\mathbf k\) direction).

real_space_coupling(self, ret_indices=False)[source]

Real-space coupling parent where sites fold into the parent real-space unit cell

The resulting parent object only contains the inner-cell couplings for the elements that couple out of the real-space matrix.

Parameters
ret_indicesbool, optional

if true, also return the atomic indices (corresponding to real_space_parent) that encompass the coupling matrix

Returns
parentparent object only retaining the elements of the atoms that couple out of the primary unit cell
atom_indexindices for the atoms that couple out of the geometry (ret_indices)
real_space_parent(self)[source]

Return the parent object in the real-space unfolded region

self_energy(self, E, k=(0, 0, 0), bulk=False, coupling=False, dtype=None, **kwargs)[source]

Calculate the real-space self-energy

The real space self-energy is calculated via:

\[\boldsymbol\Sigma^{\mathcal{R}}(E) = \mathbf S^{\mathcal{R}} E - \mathbf H^{\mathcal{R}} - \sum_{\mathbf k} \mathbf G_{\mathbf k}(E)\]
Parameters
Efloat/complex

energy to evaluate the real-space self-energy at

karray_like, optional

only viable for 3D bulk systems with real-space self-energies along 2 directions. I.e. this would correspond to circular self-energies.

bulkbool, optional

if true, \(\mathbf S^{\mathcal{R}} E - \mathbf H^{\mathcal{R}} - \boldsymbol\Sigma^\mathcal{R}\) is returned, otherwise \(\boldsymbol\Sigma^\mathcal{R}\) is returned

couplingbool, optional

if True, only the self-energy terms located on the coupling geometry (coupling_geometry) are returned

dtypenumpy.dtype, optional

the resulting data type, default to np.complex128

**kwargsdict, optional

arguments passed directly to the self.parent.Pk method (not self.parent.Sk), for instance spin

set_options(self, **options)[source]

Update options in the real-space self-energy

After updating options one should re-call initialize for consistency.

Parameters
etafloat, optional

imaginary part in the self-energy calculations (default 1e-4 eV)

dkfloat, optional

fineness of the default integration grid, specified in units of Ang, default to 1000 which translates to 1000 k-points along reciprocal cells of length 1. Ang^-1.

bzBrillouinZone, optional

integration k-points, if not passed the number of k-points will be determined using dk and time-reversal symmetry will be determined by trs, the number of points refers to the unfolded system.

trsbool, optional

whether time-reversal symmetry is used in the BrillouinZone integration, default to true.